Publisher
由于响应流的特点,我们不能再返回一个简单的POJO对象来表示结果了。必须返回一个类似Java中的Future的概念,在有结果可用时通知消费者进行消费响应。
Reactive Stream规范中这种被定义为Publisher<T>
,Publisher<T>
是一个可以提供0-N个序列元素的提供者,并根据其订阅者Subscriber<? super T>
的需求推送元素。一个Publisher<T>
可以支持多个订阅者,并可以根据订阅者的逻辑进行推送序列元素。下面这个Excel计算就能说明一些Publisher<T>
的特点。
Publisher<T>
提供了subscribe方法,允许消费者在有结果可用时进行消费。如果没有消费者Publisher<T>
不会做任何事情,他根据消费情况进行响应。 Publisher<T>
可能返回零或者多个,甚至可能是无限的,为了更加清晰表示期待的结果就引入了两个实现模型Mono和Flux。
Flux<T>
Flux 是一个发出(emit)0-N个元素组成的异步序列的Publisher<T>
,可以被onComplete信号或者onError信号所终止。在响应流规范中存在三种给下游消费者调用的方法 onNext, onComplete, 和onError。下面这张图表示了Flux的抽象模型:
以上的的讲解对于初次接触反应式编程的依然是难以理解的,所以这里有一个循序渐进的理解过程。
传统数据处理
我们在平常是这么写的:
public List<ClientUser> allUsers() {
return Arrays.asList(new ClientUser("felord.cn", "reactive"),
new ClientUser("Felordcn", "Reactor"));
}
我们通过迭代返回值List来get这些元素进行再处理(消费),这种方式有点类似厨师做了很多菜,吃不吃在于食客。需要食客主动去来吃就行了(pull的方式),至于喜欢吃什么不喜欢吃什么自己随意,怎么吃也自己随意。
流式数据处理
在Java 8中我们可以改写为流的表示:
public Stream<ClientUser> allUsers() {
return Stream.of(new ClientUser("felord.cn", "reactive"),
new ClientUser("Felordcn", "Reactor"));
}
依然是厨师做了很多菜,但是这种就更加高级了一些,提供了菜品的搭配方式(不包含具体细节),食客可以按照说明根据自己的习惯搭配着去吃,一但开始概不退换,吃完为止,过期不候。
反应式数据处理
在Reactor中我们又可以改写为Flux表示:
public Flux<ClientUser> allUsers(){
return Flux.just(new ClientUser("felord.cn", "reactive"),
new ClientUser("Felordcn", "Reactor"));
}
这时候食客只需要订餐就行了,做好了自然就呈上来,而且可以随时根据食客的饭量进行调整。如果没有食客订餐那么厨师就什么都不用做。当然不止有这么点特性,不过对于方便我们理解来说这就够了
Mono<T>
Mono 是一个发出(emit)0-1个元素的Publisher<T>
,可以被onComplete信号或者onError信号所终止。
整体和Flux差不多,只不过这里只会发出0-1个元素。也就是说不是有就是没有。象Flux一样,我们来看看Mono的演化过程以帮助理解。
传统数据处理
public ClientUser currentUser () {
return isAuthenticated ? new ClientUser("felord.cn", "reactive") : null;
}
直接返回符合条件的对象或者null。
Optional的处理方式
public Optional<ClientUser> currentUser () {
return isAuthenticated ? Optional.of(new ClientUser("felord.cn", "reactive"))
: Optional.empty();
}
这个Optional我觉得就有反应式的那种味儿了,当然它并不是反应式。当我们不从返回值Optional取其中具体的对象时,我们不清楚里面到底有没有,但是Optional是一定客观存在的,不会出现NPE问题。
反应式数据处理
public Mono<ClientUser> currentUser () {
return isAuthenticated ? Mono.just(new ClientUser("felord.cn", "reactive"))
: Mono.empty();
}
和Optional有点类似的机制,当然Mono不是为了解决NPE问题的,它是为了处理响应流中单个值(也可能是Void)而存在的。
无论Mono还是Flux大部分都是单线程阻塞式执行的,只有部分如
Flux.interval(Duration.ofMillis(1000));
是新开线程处理的
defer
Reactor的来源要么是懒惰的,要么是渴望的。诸如HTTP请求之类的更高级的请求将被延迟评估。另一方面,最简单的人喜欢Mono.just或Flux.fromIterable渴望。
这样,我的意思是调用Mono.just(System.currentTimeMillis())将立即调用该currentTimeMillis()方法并捕获结果。所述结果仅在被订阅后才
发出Mono。多次订阅也不会更改该值:
Mono<Long> clock = Mono.just(System.currentTimeMillis());
//time == t0
Thread.sleep(10_000);
//time == t10
clock.block(); //we use block for demonstration purposes, returns t0
Thread.sleep(7_000);
//time == t17
clock.block(); //we re-subscribe to clock, still returns t0
该defer运营商有没有使这个源懒惰,重新评估拉姆达的含量 每有一个新的用户时间 :
Mono<Long> clock = Mono.defer(() -> Mono.just(System.currentTimeMillis()));
//time == t0
Thread.sleep(10_000);
//time == t10
clock.block(); //invoked currentTimeMillis() here and returns t10
Thread.sleep(7_000);
//time == t17
clock.block(); //invoke currentTimeMillis() once again here and returns t17